随着各种科学领域中数据的越来越多,生成模型在科学方法的每个步骤中都具有巨大的潜力来加速科学发现。他们最有价值的应用也许在于传统上提出假设最慢,最具挑战性的步骤。现在,正在从大量数据中学到强大的表示形式,以产生新的假设,这对从材料设计到药物发现的科学发现应用产生了重大影响。 GT4SD(https://github.com/gt4sd/gt4sd-core)是一个可扩展的开放源库,使科学家,开发人员和研究人员能够培训和使用科学发现中假设生成的最先进的生成模型。 GT4SD支持跨材料科学和药物发现的各种生成模型的用途,包括基于与目标蛋白,OMIC剖面,脚手架距离,结合能等性质的分子发现和设计。
translated by 谷歌翻译
Vulnerability to adversarial attacks is a well-known weakness of Deep Neural Networks. While most of the studies focus on natural images with standardized benchmarks like ImageNet and CIFAR, little research has considered real world applications, in particular in the medical domain. Our research shows that, contrary to previous claims, robustness of chest x-ray classification is much harder to evaluate and leads to very different assessments based on the dataset, the architecture and robustness metric. We argue that previous studies did not take into account the peculiarity of medical diagnosis, like the co-occurrence of diseases, the disagreement of labellers (domain experts), the threat model of the attacks and the risk implications for each successful attack. In this paper, we discuss the methodological foundations, review the pitfalls and best practices, and suggest new methodological considerations for evaluating the robustness of chest xray classification models. Our evaluation on 3 datasets, 7 models, and 18 diseases is the largest evaluation of robustness of chest x-ray classification models.
translated by 谷歌翻译
This paper presents the OPUS ecosystem with a focus on the development of open machine translation models and tools, and their integration into end-user applications, development platforms and professional workflows. We discuss our on-going mission of increasing language coverage and translation quality, and also describe on-going work on the development of modular translation models and speed-optimized compact solutions for real-time translation on regular desktops and small devices.
translated by 谷歌翻译
We propose a clustering procedure to group K populations into subgroups with the same dependence structure. The method is adapted to paired population and can be used with panel data. It relies on the differences between orthogonal projection coefficients of the K density copulas estimated from the K populations. Each cluster is then constituted by populations having significantly similar dependence structures. A recent test statistic from Ngounou-Bakam and Pommeret (2022) is used to construct automatically such clusters. The procedure is data driven and depends on the asymptotic level of the test. We illustrate our clustering algorithm via numerical studies and through two real datasets: a panel of financial datasets and insurance dataset of losses and allocated loss adjustment expense.
translated by 谷歌翻译
To apply federated learning to drug discovery we developed a novel platform in the context of European Innovative Medicines Initiative (IMI) project MELLODDY (grant n{\deg}831472), which was comprised of 10 pharmaceutical companies, academic research labs, large industrial companies and startups. The MELLODDY platform was the first industry-scale platform to enable the creation of a global federated model for drug discovery without sharing the confidential data sets of the individual partners. The federated model was trained on the platform by aggregating the gradients of all contributing partners in a cryptographic, secure way following each training iteration. The platform was deployed on an Amazon Web Services (AWS) multi-account architecture running Kubernetes clusters in private subnets. Organisationally, the roles of the different partners were codified as different rights and permissions on the platform and administrated in a decentralized way. The MELLODDY platform generated new scientific discoveries which are described in a companion paper.
translated by 谷歌翻译
本文开发了一种协作人类机器人探索的方法,该方法利用了隐式协调。大多数自动的单机器人和多机器人勘探系统都要求远程操作员为机器人团队提供明确的指导。很少有人考虑如何将人类合作伙伴与机器人一起嵌入到该领域的指导。对人类机器人探索的剩下的挑战是从人类到机器人的目标有效沟通。在本文中,我们开发了一种方法论,该方法从人的头上的头盔深度相机到机器人的头盔深度摄像头,以及一个基于信息增益的探索目标,并在人类提供的观点中偏向运动计划。结果是一个安全访问感兴趣区域的空中系统,该区域可能无法立即被人类查看或无法触及。该方法在模拟和运动捕获场中的硬件实验中进行了评估。仿真和硬件实验的视频可在以下网址提供:https://youtu.be/7jgkbpvfioe。
translated by 谷歌翻译
本文通过开发一种层次碰撞避免方法来改善基于安全的多旋转器的近电视,该方法根据环境复杂性和感知约束来调节最大速度。在表现出不同混乱的环境中,安全速度调制具有挑战性。现有方法固定了最大速度和地图分辨率,该方法可防止车辆进入狭窄的空间,并将认知负荷置于操作员上的速度。我们通过提出一种高速公路(10 Hz)的远程操作方法来解决这些差距,该方法通过分层碰撞检查调节最大车辆速度。分层碰撞检查器同时适应当地地图的体素尺寸和最大车辆速度,以确保运动计划安全。在模拟和现实世界实验中评估了所提出的方法,并将其与基于非自适应运动原语的远程操作方法进行了比较。结果证明了所提出的详细方法方法的优势以及完成任务的能力,而无需用户指定最大车辆速度。
translated by 谷歌翻译
目的:本研究评估了市售可解释的AI算法在增强临床医生在胸部X射线(CXR)上鉴定肺癌的能力的影响。设计:这项回顾性研究评估了11位临床医生在胸部X光片中检测肺癌的表现,并在有和没有市售的AI算法的帮助下(红点,观察到),预测CXRS可疑的肺癌。根据临床确定的诊断评估了临床医生的表现。设置:该研究分析了NHS医院的匿名患者数据;该数据集由成年患者(18岁及以上)的400张胸部X光片组成,他们在2020年进行了CXR,并提供相应的临床文本报告。参与者:由11位临床医生(放射科医生,放射科医生受训者和报告射线照相师)组成的读者小组参加。主要结果指标:临床医生在CXR上检测肺癌的总体准确性,敏感性,特异性和精度,有或没有AI输入。还评估了有或没有AI输入的临床医生与绩效标准偏差之间的协议率。结果:临床医生对AI算法的使用导致肺部肿瘤检测的总体性能提高,从而达到了在CXR上鉴定出的肺癌的总体增长17.4% ,分别增加了13%和13%的阶段1和2期肺癌的检测,以及临床医生表现的标准化。结论:这项研究在AI算法的临床实用性方面表现出了巨大的希望,可以通过整体改善读者表现来改善早期肺癌诊断和促进健康平等,而不会影响下游成像资源。
translated by 谷歌翻译
随着Covid-19在世界范围内的传播,需要快速,精确的自动分诊机制,以减少人类的努力,例如用于基于图像的诊断。尽管文献在这个方向上显示出了有希望的努力,但报告的结果并未考虑在不同情况下获得的CT扫描的可变性,因此,渲染模型不适合使用,例如使用例如使用例如不同的扫描仪技术。虽然现在可以使用PCR测试有效地进行COVID-19诊断,但该用例却例证了一种方法来克服数据可变性问题以使医疗图像分析模型更广泛地适用。在本文中,我们使用COVID-19诊断的示例明确解决了可变性问题,并提出了一种新颖的生成方法,旨在消除例如成像技术同时通过利用深度自动编码器的想法来同时引入CT扫描的最小变化。拟议的预性架构(PrepNet)(i)在多个CT扫描数据集上共同训练,(ii)能够提取改进的判别特征以改善诊断。三个公共数据集(SARS-COVID-2,UCSD COVID-CT,MOSMED)的实验结果表明,我们的模型将交叉数据集的概括提高了高达$ 11.84 $ $的百分比,尽管数据集绩效中的情况略有下降。
translated by 谷歌翻译
实用的图像分割任务涉及必须从嘈杂,扭曲和/或不完整的观察值重建的图像。解决此类任务的最新方法是使用分段共同执行此次重建,使用每个分段来指导彼此。但是,迄今为止,这项工作采用了相对简单的分割方法,例如Chan - VESE算法。在本文中,我们提出了一种使用基于图的分割方法进行联合重建分割的方法,该方法一直在看到最近的兴趣增加。由于涉及的矩阵尺寸较大而引起并发症,我们展示了如何管理这些并发症。然后,我们分析我们方案的收敛属性。最后,我们将此方案应用于``两个母牛''图像的扭曲版本,该版本是先前基于图的分割文献中熟悉的``两个奶牛''图像,首先是高度噪声的版本,其次是模糊的版本,在两种情况下都可以实现高度准确的细分。我们将这些结果与通过顺序重建分割方法获得的结果进行比较,发现我们的方法与重建和分割精度相比,甚至均超过了这些方法。
translated by 谷歌翻译